Posts Tagged ‘quantum computing’

In the early, exciting days of the PC era – when our firm was getting started — the pace of growth in technology was largely driven by the now famous “Moore’s Law” named after Intel co-founder Gordon Moore, who noted that the power of the PC’s main processor doubled roughly every two years.  That law has governed pretty much the entire computer realm for nearly 50 years.

But no more.  Or should we say, no Moore.

The physical limitations of electrons and heat in confined spaces are bringing this biannual doubling of capacity close to its predictable end.  Moreover, designing chips significantly faster today requires a different sort of Moore-doubling – as in doubling (or more) the cost of the chip fab plants that make them, which are now in the $10 billion plus range.  As a result, there are few competitors remaining, even as the market for chips rose by more than 20% in 2017 alone.

As tempers fray between the U.S. and China and the physics of the matter intervene, the future of the industry looks increasingly messier – and thus ripe for all manner of competition, collapse and new innovations.

China, which does have the money to compete, is on a global quest for technological supremacy by 2025 in national push, and has long been a voracious consumer of American technology, which has often been given up freely American by firms as a right to compete there.  But we’re not here to argue politics, trade wars notwithstanding.

This is a complex supply chain starting with the purest of silicon dioxide mined from the Appalachian Mountains and shipped to Japan to be turned into pure silicon ingots.  These are then sliced into wafers in Taiwan or South Korea and imprinted meticulously with equipment made in the Netherlands.  The design pattern might come from ARM or Intel or one of a handful of other chip designers, and it’s all eventually packaged into ceramic containers that populate any chip board out there today, to be tested in China or Vietnam or the Philippines.  The resulting circuit board arrives in Mexico or Germany or China for assembly into a robot or a PC or a cloud server.

One edge that the West, in particular the U.S., holds is that the semiconductor industry relies greatly on what one industry expert calls “repetitive cycles of learning,” ensuring higher barriers to entry for those without deep prior experience and knowledge.  So it gets harder.  Then again, the effect of something called Dennard scaling has meant that shrinking components tend to offer fewer and fewer benefits in chip making over successive generations.  Thus, being a few steps behind the industry leaders may not matter so much.

But with the demise of Moore’s law, for perhaps the first time in decades, there opens a whole new competitive opportunity.

Quantum computing, which relies on principles of physics that exist at the atomic level, afford the opportunity to think in entirely new ways about how we make the next generation(s) of computers.

Quantum can speed up some calculations immensely, even if at the expense of doing so a bit less accurately.  Still, this may hold computational benefits in many fields where absolute calculation perfection is not required.  Google, IBM, Microsoft and others have quantum-computing projects they’re working on right now.  Here again though, China is making big bets, the technology is nascent and not yet fully practicable, and the winners of the future are unclear.

What is clear is that the Moore’s Law that governed the growth of our industry when we started in the 1980s is destined to be something altogether different to the next generation of computing pioneers.

We wish them the best of luck.

Read Full Post »

Mike Lazaridis is justly famous and wealthy for the being the guy who co-invented the Blackberry, the first ‘must-have ‘personal digital assistant.  And Lazaridis says he “won’t be iPhoned again.”

With colleague Doug Fregin, Lazaridis has poured nearly half a billion dollars into projects involving quantum computing over the past 20 years, and now runs a venture company that supports the effort.  Noting past failures and the scope and breadth of computing’s next frontier, quantum computing, he notes that “you have to build an industry.”  The importance of being nimble, close to customers and constantly moving forward “can’t be done with just one company” says Lazaridis.

Companies including Google, IBM and others are also chomping at the quantum bit, and so Lazaridis has chosen to make his well-placed, narrower venture bets on companies and technologies that could be commercialized in just a few years.

That’s important because quantum (as we’ve written about in this blog several times before) is tricky.  While classical computers handle their information bits as 1s and 0s, in quantum, a bit can be both a one and zero at the same time, enabling a level of multi-tasking previously unthinkable.  The potential, in fields as diverse as weather, aviation and warfare, is enormous.  But quantum as it exists today is still on shaky ground.  The existing number of quantum computers is small, and as Bloomberg BusinessWeek reports in a recent article, “they become error-prone after mere fractions of a second – and researchers say perfecting them could take decades.”

Hence the importance of aiming carefully.  Several of Lazaridis’ investments have come to market, or are close.  Isara Corp. sells security software it says can block quantum hacks and projects sales of $3M in 2018. High Q Technologies claims that by year-end it will be selling quantum sensors 100,000 times more sensitive than the tools pharmaceutical companies use today to develop drugs. (Our featured photo today is of a device used to test the superconducting films used on silicon at the atomic level.)

Lazaridis has teamed with former Blackberry teams to connect quantum computers with conventional computers, in order to make quantum more accessible to a wider audience.  Those efforts will still need to prove themselves viable as businesses, but the mere idea reinforces the industry certainty that the current state of computing will not remain the status quo, and that the future of computing is quantum.

It’s a race, he knows.  One driven by venture capital and the ability to put one’s money where one’s mouth is.


Read Full Post »

“I think I can safely say that nobody understands quantum mechanics,” said Nobel Prize-winning theoretical physicist Richard Fenyman.  His sentiments were echoed by Bill Gates, who said recently that Microsoft’s quantum-computing project is “the one part of Microsoft where they put up slides that I truly don’t understand.”  Even Albert Einstein couldn’t wrap his head around it, so to speak, declaring that the thinking behind quantum mechanics was fundamentally flawed.

And yet… Scientists have since proved the theory repeatedly and conclusively.  More to the point, computers today are being built upon the principles of quantum mechanics – they actually exist.  And wouldn’t you know it, Google (a division now of Alphabet, Inc.) is taking a lead role.  (So is China.)

The oversimplified guiding principle here is that in the quantum world – the world at the atomic level – a strange phenomenon exists known as ‘superposition’ which states that a single atom can be in two locations at the same time.  In our ‘real’ world, that’s simply impossible, and so we can excuse Fenynman, Gates, Einstein and ourselves for not ‘getting it.’

But as Vijay Pande, a partner at Andreessen Horowitz, the Silicon Valley venture firm says, “If this works, it will change the world and how things are done.”  He’s not kidding.

How these things work is less important to most of us than what their working may portend for the future.  At the ‘how’ level, quantum computing involves using qubits rather than the traditional computer’s bits.  In bits, everything is either a one or zero.  In qubits, they can be a one and a zero at the same time.  This allows qubits to process a lot more information than bits, which are set in a specific state – exponentially so when they are combined.  Thus, while 1 qubit can equal 2 bits, and 2 can equal 4, by the time you get to 10 qubits you have the ‘equivalent’ (loosely speaking) of 1,024 bits.  And at 20 qubits, you have over 1 million equivalent bits.  You get the idea.

The practical application of this compounding expansion of computing technology becomes very relevant when you start looking at really deep and complicated problems, for example unbreakable encryption, or simply creating algorithms to calculate the fastest routes to the airport with minimum traffic.  A classical computer would take 45 minutes to take the data of 10,000 taxis and perform that task; an experiment with a quantum computer from the Canadian firm D-Wave (whose quantum PC is pictured above) did it in less than a second.

Because large-scale encryption can be enabled (reverse-factoring prime numbers is a common encryption technique) as well as unbound (or cracked), quantum computing power has attracted the attention of the NSA, where code-breaking quantum computers could be devastating to the national security.  NSA employees and vendors have already been put on alert that they will soon need to overhaul their encryption techniques.  Of course, the NSA (like Google) is building its own quantum computer.

The potential exists to upend entire industries, which of course is why Google is employing its quantum computing powers in the realm of AI.  Word is they already have a 22 qubit chip, frozen inside ‘cryostats’ in Santa Barbara, and that they plan to use their complex (and expensive) setup to deliver quantum computing via the cloud, possibly charging by the second according to reporters at The Wall Street Journal.

There are still some very real hurdles to overcome, from error-checking to the expensive containers for the chips used to power then, but if computers have taught us anything the past 50 years, it is that the future will always be faster, and hence more powerful – and the sky, or perhaps more to the point, the atom – is truly the limit.


Read Full Post »

Quantum computing encryption is secure, fast, hack-proof so far, and getting big in China.

We’ve written here before about quantum computing, the latest leap in computer technology.  Those of us involved in the industry since the dawn of the PC can only marvel as the technology keeps marching forward, beyond even the tacit bounds of Moore’s Law, and into the realm of quantum physics.

That branch of physics, often typified by the Heisenberg Principle which states, in simple terms, that at the very sub-microscopic, atomic-small level of physics, one can know a particle’s position or direction of travel, but never both simultaneously.  In quantum computing terms, this means that, unlike a normal ‘binary’ computer transaction in which a switch is either ‘on’ or ‘off,’ that instead, a particle (or a bit) can be both on and off simultaneously.  That new realm of multi-state properties defies our logical, if somewhat limited, knowledge of the larger world, but it opens up a lot of new possibilities.  And quantum computing is already beyond the theoretical stage; it’s already operational.

A physics professor at the University of Geneva, Gregoire Ribordy, has developed something called quantum key distribution, using the unique properties of quantum computing technology to create a data encryption system so secure that he says it can’t even be deciphered by an advanced quantum computer (and as reported recently in a Focus/Security special section at Bloomberg BusinessWeek).

Ribordy, formerly a researcher at Nikon in Tokyo, believes “our challenge is to help governments be ready.”  His company ID Quantique SA is based in Switzerland, and recently signed a joint venture agreement with a Chinese company.  As a result, sales of his quantum key equipment – whose quantum servers sell for about $100,000 a pair – are said to have surged at Chinese banks, government agencies, and even the China Railway Corp.

Ribordy reports he’s sold fewer than 100 servers in the U.S., but predicts the growing interest in China will spur interest elsewhere, and notes, “If China’s doing it, maybe it’s a good idea to look at why.”  Recently the Chinese claim to have launched a quantum-enabled satellite to securely transmit data.  Ribordy’s Chinese partner has built the world’s first commercial network secured by Quantum technology between two major cities, according to Bloomberg.

Quantum key does have one drawback, it is reported, in that there is a limit to how far about the machines can be from one another.  According to BusinessWeek, “quantum computers communicate by firing photons over fiber-optic lines, which become unreliable at distances beyond a few hundred miles.”

Still, the transition is beginning, and the U.K.’s National Cyber Security Centre predicts the cost will drop rapidly which, along with the highly secure nature of quantum encryption is bound to increase its popularity everywhere.  Recently, China has begun to pull ahead of the U.S. in some key quantum areas according to industry insiders, while the level of investment there continues to grow.

And of course, just to square the circle in a world in which hackers are always looking to leapfrog the security teams, Richard Murray of Innovate U.K., a government agency that helps foster new technologies recently noted, “The reason there is a market for this now is to prepare for the threat of a quantum hack in the future.”

And the beat goes on.

Read Full Post »

The idea of “quantum computing” has been around for a while, but lately, some very blue-chip sorts of companies have begun investing in it seriously.  Names like HP, Google and Microsoft, to name a few.

Quantum computing is best thought of as the ‘next generation’ of computing technology, in which the weird and dazzling properties of the atomic and sub-atomic worlds govern what a computer is capable of.  Quantum theory was born about a century ago, but its practical use has long been out of man’s reach.  But the day is coming. Everything in the natural world can be described by quantum mechanics – but it operates on a very different plane from the natural order of things we humans have come to know.  And sometimes, quantum properties can act downright… weird.

For example, in computers, the fundamental notion of a “bit” of information is defined by a flow of electric current that, like a switch, is either “on” or “off.”  There’s no confusion, and that foundation allows computers to work from flowing electrons, and software programmers to create code that depends on it.  But in the quantum world, things aren’t so simple.

Without veering off into strange properties and the famous Heisenberg Principle which says that the mere observation of an atomic particle or event can change its very nature (you can determine a particle’s direction of movement or its location, but not both at the same instant)… the bottom line is that a quantum bit can be both on and off simultaneously.  As scientists learn to harness the power of this notion of a ‘qubit,’ it promises to unleash phenomenally more powerful hardware and software than ever seen before.

Which brings us to the future of computing.

One of the most promising possibilities in quantum computing is that of unbreakable security.  The unique properties of this on-while-off status of a qubit gives it the capability of working out prime numbers that, when multiplied together make up ridiculously large primes whose reverse uncoupling (or “decomposition”) is mathematically extremely complex, and is the basis of most modern cryptography in use today.

The new algorithms produced by quantum computing promise to deliver cryptographic solutions that quantum computers can crunch through, but which are well beyond anything that even today’s supercomputers are capable of.

Meanwhile, companies like those mentioned earlier all have research programs for determining how best to harness these quantum capabilities in software and applications.  Early interest has come from governments and defense contractors, not to mention the NSA, as well as a growing number of startups.  These efforts are based on the work of Dr. Peter Shor who, at Bell Labs in 1994, first showed how a quantum computer would be capable of solving the prime riddle.

In the future, that capability would be useful “for all manner of currently intractable problems” notes a recent article in The Economist (March 11, 2017).  Applications including those requiring extremely precise timing, perfectly accurate GPS triangulation and massively complex encryption will likely be among early efforts.

While these machines and software are ultimately among mankind’s greatest engineering challenges, one tends to believe that in the long history of computing, they’re simply the next step on the trail, in the seemingly never ending evolution of the computer.

(Note: In our next post, we’ll present a counterpoint to our “unbreakable security” thinking above, courtesy of the editors at The Economist. Stay tuned…)



Read Full Post »

quantum_dilbertA recent article in Bloomberg BusinessWeek highlights the role that quantum mechanics will likely play as it comes to dominate our next generation of computing.  As Carl Sagan once observed regarding quantum phenomena, “common sense is almost useless in approaching it.”

Matter simply behaves differently – often far differently from what’s expected – at the atomic level.  And that’s an area that scientists are attempting to exploit for new applications in computing.  While a full-scale quantum computer is “years off” in Bloomberg’s view, a lot of progress is being made already in materials and designs – with potentially striking benefits.

The uniqueness of the quantum environment lies in the very properties of subatomic particles that can be simultaneously on and off.  That a thing could be in two states virtually simultaneously opens up a host of possibilities.  Those properties might well be exploited by chemists and drug designers, or by folks who try to solve ‘optimization’ problems – like air traffic control, improved artificial intelligence, better sensors and so on.

Big business, intelligence agencies and government have taken an interest for yet another reason: the breaking of codes.  Put simply, today’s cryptographic programs that protect our data are often derived from relying on very difficult math problems, like factoring large integers, that today’s computers can’t solve in a reasonable timeframe.  But with quantum computers, the speculation is that those codes might be cracked very quickly.

As a result, the underlying security of nearly everything from phones to e-commerce might be in jeopardy.  The Cloud Security Alliance, concerned about quantum computing’s ability to “break all public-key encryption now in use,” notes that “The impact on the world economy could be devastating.”

But let’s not panic just yet.  Because of course, other scientists are already working on “quantum-resistant” encryption.  Google is already on it, although more research is needed.

Businesses will continue to be warned about “being vigilant.”  Many files of a legal or business nature must be stored for a long time, for legal or commercial reasons.  Few businesses have a long-term strategy for protecting them, notes Bloomberg.  They urge greater cooperation between Silicon Valley and the government in laying the groundwork for cloud protection against such quantum crypto-vigilantes.

One could be forgiven for being skeptical of either the promise for cooperation or the technical abilities of the good guys to stay perennially ahead of the bad guys.  It’s bad enough now, what with cyber-crime at an all-time high.  One shudders to think what adding the new “quantum” dimension will do to add to our security woes.


[Dilbert Cartoon copyright 2012, Scott Adams, Inc.]

Read Full Post »